Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731985

RESUMO

The effect of UV-B radiation exposure on transgenerational plasticity, the phenomenon whereby the parental environment influences both the parent's and the offspring's phenotype, is poorly understood. To investigate the impact of exposing successive generations of rice plants to UV-B radiation on seed morphology and proanthocyanidin content, the local traditional rice variety 'Baijiaolaojing' was planted on terraces in Yuanyang county and subjected to enhanced UV-B radiation treatments. The radiation intensity that caused the maximum phenotypic plasticity (7.5 kJ·m-2) was selected for further study, and the rice crops were cultivated for four successive generations. The results show that in the same generation, enhanced UV-B radiation resulted in significant decreases in grain length, grain width, spike weight, and thousand-grain weight, as well as significant increases in empty grain percentage and proanthocyanidin content, compared with crops grown under natural light conditions. Proanthocyanidin content increased as the number of generations of rice exposed to radiation increased, but in generation G3, it decreased, along with the empty grain ratio. At the same time, biomass, tiller number, and thousand-grain weight increased, and rice growth returned to control levels. When the offspring's radiation memory and growth environment did not match, rice growth was negatively affected, and seed proanthocyanidin content was increased to maintain seed activity. The correlation analysis results show that phenylalanine ammonialyase (PAL), cinnamate-4-hydroxylase (C4H), dihydroflavonol 4-reductase (DFR), and 4-coumarate:CoA ligase (4CL) enzyme activity positively influenced proanthocyanidin content. Overall, UV-B radiation affected transgenerational plasticity in seed morphology and proanthocyanidin content, showing that rice was able to adapt to this stressor if previous generations had been continuously exposed to treatment.


Assuntos
Oryza , Proantocianidinas , Raios Ultravioleta , Proantocianidinas/metabolismo , Oryza/efeitos da radiação , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Sementes/efeitos da radiação , Sementes/metabolismo , Grão Comestível/efeitos da radiação , Grão Comestível/metabolismo , Fenótipo
2.
PLoS One ; 19(5): e0303040, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713652

RESUMO

In the present study, we attempted to use melatonin combined with germination treatment to remove pesticide residues from contaminated grains. High levels of pesticide residues were detected in soybean seeds after soaking with chlorothalonil (10 mM) and malathion (1 mM) for 2 hours. Treatment with 50 µM melatonin for 5 days completely removed the pesticide residues, while in the control group, only 61-71% of pesticide residues were removed from soybean sprouts. Compared with the control, melatonin treatment for 7 days further increased the content of ascorbic acid (by 48-66%), total phenolics (by 52-68%), isoflavones (by 22-34%), the total antioxidant capacity (by 37-40%), and the accumulated levels of unsaturated fatty acids (C18:1, C18:2, and C18:3) (by 17-30%) in soybean sprouts. Moreover, melatonin treatment further increased the accumulation of ten components of phenols and isoflavones in soybean sprouts relative to those in the control. The ability of melatonin to accelerate the degradation of pesticide residues and promote the accumulation of antioxidant metabolites might be related to its ability to trigger the glutathione detoxification system in soybean sprouts. Melatonin promoted glutathione synthesis (by 49-139%) and elevated the activities of glutathione-S-transferase (by 24-78%) and glutathione reductase (by 38-61%). In summary, we report a new method in which combined treatment by melatonin and germination rapidly degrades pesticide residues in contaminated grains and improves the nutritional quality of food.


Assuntos
Antioxidantes , Germinação , Glycine max , Melatonina , Valor Nutritivo , Resíduos de Praguicidas , Sementes , Melatonina/farmacologia , Germinação/efeitos dos fármacos , Resíduos de Praguicidas/análise , Sementes/efeitos dos fármacos , Sementes/química , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Glycine max/química , Antioxidantes/metabolismo , Grão Comestível/efeitos dos fármacos , Grão Comestível/metabolismo , Fenóis/análise , Contaminação de Alimentos/análise , Glutationa/metabolismo
3.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474107

RESUMO

Rice (Oryza sativa L.) is the staple food for more than 50% of the world's population. Owing to its growth characteristics, rice has more than 10-fold the ability to enrich the carcinogen arsenic (As) than other crops, which seriously affects world food security. The consumption of rice is one of the primary ways for humans to intake As, and it endangers human health. Effective measures to control As pollution need to be studied and promoted. Currently, there have been many studies on reducing the accumulation of As in rice. They are generally divided into agronomic practices and biotechnological approaches, but simultaneously, the problem of using the same measures to obtain the opposite results may be due to the different species of As or soil environments. There is a lack of systematic discussion on measures to reduce As in rice based on its mechanism of action. Therefore, an in-depth understanding of the molecular mechanism of the accumulation of As in rice could result in accurate measures to reduce the content of As based on local conditions. Different species of As have different toxicity and metabolic pathways. This review comprehensively summarizes and reviews the molecular mechanisms of toxicity, absorption, transport and redistribution of different species of As in rice in recent years, and the agronomic measures to effectively reduce the accumulation of As in rice and the genetic resources that can be used to breed for rice that only accumulates low levels of As. The goal of this review is to provide theoretical support for the prevention and control of As pollution in rice, facilitate the creation of new types of germplasm aiming to develop without arsenic accumulation or within an acceptable limit to prevent the health consequences associated with heavy metal As as described here.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Humanos , Arsênio/metabolismo , Oryza/genética , Poluentes do Solo/metabolismo , Melhoramento Vegetal , Estruturas Vegetais/metabolismo , Solo , Grão Comestível/metabolismo
4.
Sci Rep ; 14(1): 4128, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374189

RESUMO

The traditional rice genotypes of Assam are considered to have biological value due to the presence of several bioactive compounds like flavonoids, polyphenols, and anthocyanins, which have antioxidant, anti-cancer, anti-diabetic, and anti-aging properties. The pigmented genotypes are considered to have high iron (Fe) content. However, the effect of Fe and Zinc (Zn) accumulation on anthocyanin content is yet to be studied in pigmented rice of Assam. We studied the Fe, Zn, and anthocyanin content in grains of 204 traditional rice of Assam, which are traditionally preferred for their nutraceutical properties. We performed phenotypic and biochemical compositional analyses of 204 genotypes to identify those having high Fe, Zn, and anthocyanin. We also carried out the differential expression of a few selected Fe and Zn transporter genes along with the expression of anthocyanin biosynthesis genes. Interestingly, all pigmented rice genotypes contained a higher amount of phenolic compound than the non-pigmented form of rice. We found the highest (32.73 g) seed yield per plant for genotype Jengoni followed by Kajoli chokuwa and Khau Pakhi 1. We also listed 30 genotypes having high levels of Fe and Zn content. The genotype Jengoni accumulated the highest (186.9 µg g-1) Fe, while the highest Zn (119.9 µg g-1) content was measured in genotype Bora (Nagaon), The levels of Ferritin 2 gene expression were found to be significantly higher in Bora (Nagaon) (> 2-fold). For Zn accumulation, the genotype DRR Dhan-45, which was released as a high Zn content variety, showed significant up-regulation of the ZIP4 gene at booting (> 7-fold), post-anthesis (7.8-fold) and grain filling (> 5-fold) stages followed by Bora (Nagaon) (> 3-fold) at post-anthesis. Anthocyanidin synthase gene, Flavanone 3-dioxygenase 1-like (FDO1), and Chalcone-flavanone isomerase-like genes were up-regulated in highly pigmented genotype Bora (Nagaon) followed by Jengoni. Based on our data there was no significant correlation between iron and zinc content on the accumulation of anthocyanin. This challenges the present perception of the higher nutritive value in terms of the micronutrient content of the colored rice of Assam. This is the first report on the detailed characterization of traditional rice genotypes inclusive of phenotypic, biochemical, nutritional, and molecular attributes, which would be useful for designing the breeding program to improve Fe, Zn, or anthocyanin content in rice.


Assuntos
Ferro , Oryza , Ferro/metabolismo , Zinco/metabolismo , Antocianinas/metabolismo , Oryza/metabolismo , Melhoramento Vegetal , Grão Comestível/metabolismo , Genótipo
5.
Sci Rep ; 13(1): 19823, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963959

RESUMO

Environmental pollution due to the improper use of the chemical fungicides represents a vital ecological problem, which affects human and animal health, as well as the microbial biodiversity and abundance in the soil. In this study, an endophytic fungus Aspergillus oryzae YRA3, isolated from the wild plant Atractylis carduus (Forssk.) C.Chr, was tested for its biocontrol activity against Rhizoctonia root rot of sorghum. The antagonistic potential of A. oryzae YRA3 was tested against Rhizoctonia solani in vitro. A full inhibition in the growth of R. solani was recorded indicating a strong antagonistic potential for this endophyte. To investigate the chemical composition of its metabolites, GC/MS analysis was used and thirty-two compounds in its culture filtrate were identified. Among these metabolites, some compounds with an antifungal background were detected including palmitic acid, 2-heptanone, and 2,3-butanediol. To these antifungal metabolites the antagonistic activity of A. oryzae YRA3 can be attributed. In the greenhouse experiment, treating of the infected sorghum plants with A. oryzae YRA3 significantly reduced severity of the Rhizoctonia root rot by 73.4%. An upregulation of the defensive genes (JERF3), (POD) and (CHI II) was recorded in sorghum roots when were inoculated with A. oryzae YRA3. In addition, an increment in the activity of peroxidase and polyphenol oxidase, as well as the total phenolic content in the sorghum roots was also recorded. Furthermore, the results obtained from the greenhouse experiment revealed a growth-promoting effect for inoculating the sorghum plants with A. oryzae YRA3. It can be concluded that A. oryzae YRA3 can be a probable biological agent to control this disease in sorghum. However, its evaluation under field conditions is highly needed in the future studies.


Assuntos
Aspergillus oryzae , Sorghum , Animais , Humanos , Antifúngicos/farmacologia , Endófitos/fisiologia , Sorghum/metabolismo , Antioxidantes/farmacologia , Aspergillus oryzae/metabolismo , Transcriptoma , Rhizoctonia/fisiologia , Grão Comestível/metabolismo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
6.
Plant Physiol Biochem ; 205: 108184, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977025

RESUMO

DNA damage is a serious threat to all living organisms and may be induced by environmental stressors. Previous studies have revealed that the tardigrade (Ramazzotius varieornatus) DNA damage suppressor protein Dsup has protective effects in human cells and tobacco. However, whether Dsup provides radiation damage protection more widely in crops is unclear. To explore the effects of Dsup in other crops, stable Dsup overexpression lines through Agrobacterium-mediated transformation were generated and their agronomic traits were deeply investigated. In this study, the overexpression of Dsup not only enhanced the DNA damage resistance at the seeds and seedlings stages, they also exhibited grain size enlargement and starch granule structure and cell size alteration by the scanning electron microscopy observation. Notably, the RNA-seq revealed that the Dsup plants increased radiation-related and abiotic stress-related gene expression in comparison to wild types, suggesting that Dsup is capable to coordinate normal growth and abiotic stress resistance in rice. Immunoprecipitation enrichment with liquid chromatography-tandem mass spectrometry (IP-LC-MS) assays uncovered 21 proteins preferably interacting with Dsup in plants, suggesting that Dsup binds to transcription and translation related proteins to regulate the homeostasis between DNA protection and plant development. In conclusion, our data provide a detailed agronomic analysis of Dsup plants and potential mechanisms of Dsup function in crops. Our findings provide novel insights for the breeding of crop radiation resistance.


Assuntos
Oryza , Humanos , Oryza/metabolismo , Melhoramento Vegetal , Grão Comestível/genética , Grão Comestível/metabolismo , Sementes/metabolismo , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
J Environ Manage ; 347: 119138, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37783079

RESUMO

Many fields where wheat is grown in northern China are co-polluted by arsenic (As) and cadmium (Cd). Thus, remediation of As and Cd-contaminated alkaline soils is crucial for safe wheat production. In this study, a pot experiment was carried out to investigate the impact of 1% and 2% maize straw (MS) incorporation on As and Cd bioavailability, binding forms, uptake by winter wheat (Triticum aestivum L.), and bacterial communities in smelter (SS) and irrigation (IS) alkaline contaminated soils. The results indicated that 2% MS incorporation significantly (p < 0.05) increased bioavailable-As by 37% (SS) and 39% (IS) with no significant change in the bioavailable-Cd in SS2% (31.95%) from 31.95% (SSCK) and IS2% (33.33%) from 32.82% (ISCK). Incorporation of 2% MS increased the grain As concentration from 0.22 mg kg-1 (SSCK) to 0.51 mg kg-1 (SS2%) and from 0.59 mg kg-1 (ISCK) to 0.84 mg kg-1 (IS2%) which is above the acceptable standard of 0.5 mg kg-1 (GB2726-2017). In contrast, the Cd content in grains was maintained at 0.09 (SS1%), 0.04 (SS2%) and 0.03 (IS1%), 0.02 (IS2%) below the acceptable standard of 0.10 mg kg-1 (GB2762-2017). The amendment through dissolved organic carbon mediated As desorption enhanced As transfer to wheat grain, decreasing DTPA-Cd in the soils and its consequent translocation to wheat leaves and grain. The 2% MS incorporation increased the active As fractions, reduced mobile Cd into immobile fractions, and promoted the abundance of Actinobacteria, Bacteroidetes, and Firmicutes in the two soils. These attributes of MS in decreasing the accumulation of Cd in wheat leaves and grains signified its potential as a suitable ingredient for Cd sequestration and food safety in Cd-contaminated soils.


Assuntos
Arsênio , Poluentes do Solo , Cádmio/química , Arsênio/análise , Triticum/metabolismo , Zea mays/metabolismo , Poluentes do Solo/química , Grão Comestível/química , Grão Comestível/metabolismo , Solo/química , Bactérias/metabolismo
8.
Mol Plant ; 16(10): 1661-1677, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37674316

RESUMO

Crop yield plays a critical role in global food security. For optimal plant growth and maximal crop yields, nutrients must be balanced. However, the potential significance of balanced nitrogen-iron (N-Fe) for improving crop yield and nitrogen use efficiency (NUE) has not previously been addressed. Here, we show that balanced N-Fe sufficiency significantly increases tiller number and boosts yield and NUE in rice and wheat. NIN-like protein 4 (OsNLP4) plays a pivotal role in maintaining the N-Fe balance by coordinately regulating the expression of multiple genes involved in N and Fe metabolism and signaling. OsNLP4 also suppresses OsD3 expression and strigolactone (SL) signaling, thereby promoting tillering. Balanced N-Fe sufficiency promotes the nuclear localization of OsNLP4 by reducing H2O2 levels, reinforcing the functions of OsNLP4. Interestingly, we found that OsNLP4 upregulates the expression of a set of H2O2-scavenging genes to promote its own accumulation in the nucleus. Furthermore, we demonstrated that foliar spraying of balanced N-Fe fertilizer at the tillering stage can effectively increase tiller number, yield, and NUE of both rice and wheat in the field. Collectively, these findings reveal the previously unrecognized effects of N-Fe balance on grain yield and NUE as well as the molecular mechanism by which the OsNLP4-OsD3 module integrates N-Fe nutrient signals to downregulate SL signaling and thereby promote rice tillering. Our study sheds light on how N-Fe nutrient signals modulate rice tillering and provide potential innovative approaches that improve crop yield with reduced N fertilizer input for benefitting sustainable agriculture worldwide.


Assuntos
Nitrogênio , Oryza , Nitrogênio/metabolismo , Fertilizantes , Peróxido de Hidrogênio/metabolismo , Grão Comestível/metabolismo , Agricultura , Oryza/metabolismo
9.
Ecotoxicol Environ Saf ; 263: 115350, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586200

RESUMO

Across the globe, the frequent occurrence of drought spells has significantly undermined the sustainability of modern high-input farming systems, particularly those focused on staple crops like wheat. To ameliorate the deleterious impacts of drought through a biologically viable and eco-friendly approach, a study was designed to explore the effect of nicotinic acid on different metabolic, and biochemical processes, growth and yield of wheat under optimal moisture and drought stress (DS). The current study was comprised of different levels of nicotinic acid applied as foliar spray (0 g L-1, 0.7368, 1.477, 2.2159 g L-1) and fertigation (0.4924, 0.9848, and 1.4773 g L-1) under normal conditions and imposed drought by withholding water at anthesis stage. The response variables were morphological traits such as roots and shoots characteristics, yield attributes, grain and biological yields along with biosynthesis of antioxidants. The results revealed that nicotinic acid dose of 2.2159 g L-1 out-performed rest of treatments under both normal and DS. The same treatment resulted in the maximum root growth (length, fresh and dry weights, surface area, diameter) and shoot traits (length, fresh and dry weights) growth. Additionally, foliar applied nicotinic acid (2.2159 g L-1) also produced as the highest spike length, grains spike-1, spikelet's spike-1 and weight of 1000 grains. Moreover, these better yield attributes led to significantly higher grain yield and biological productivity of wheat. Likewise in terms of physiological growth of wheat under DS, the same treatment remained superior by recording the highest SPAD value, relative water content, water potential of leaves, leaf area, stomatal conductance (292 mmolm-2S-1), internal carbon dioxide concentration, photosynthesis and transpiration rate. Interestingly, exogenously applied nicotinic acid remained effective in triggering the antioxidant system of wheat by recording significantly higher catalase, peroxidase, superoxide dismutase and ascorbate peroxidase.


Assuntos
Antioxidantes , Niacina , Antioxidantes/metabolismo , Triticum/metabolismo , Secas , Água/metabolismo , Grão Comestível/metabolismo , Mecanismos de Defesa
10.
Proc Natl Acad Sci U S A ; 120(32): e2307604120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523523

RESUMO

In plants, host-pathogen coevolution often manifests in reciprocal, adaptive genetic changes through variations in host nucleotide-binding leucine-rich repeat immune receptors (NLRs) and virulence-promoting pathogen effectors. In grass powdery mildew (PM) fungi, an extreme expansion of a RNase-like effector family, termed RALPH, dominates the effector repertoire, with some members recognized as avirulence (AVR) effectors by cereal NLR receptors. We report the structures of the sequence-unrelated barley PM effectors AVRA6, AVRA7, and allelic AVRA10/AVRA22 variants, which are detected by highly sequence-related barley NLRs MLA6, MLA7, MLA10, and MLA22 and of wheat PM AVRPM2 detected by the unrelated wheat NLR PM2. The AVR effectors adopt a common scaffold, which is shared with the RNase T1/F1 family. We found striking variations in the number, position, and length of individual structural elements between RALPH AVRs, which is associated with a differentiation of RALPH effector subfamilies. We show that all RALPH AVRs tested have lost nuclease and synthetase activities of the RNase T1/F1 family and lack significant binding to RNA, implying that their virulence activities are associated with neo-functionalization events. Structure-guided mutagenesis identified six AVRA6 residues that are sufficient to turn a sequence-diverged member of the same RALPH subfamily into an effector specifically detected by MLA6. Similar structure-guided information for AVRA10 and AVRA22 indicates that MLA receptors detect largely distinct effector surface patches. Thus, coupling of sequence and structural polymorphisms within the RALPH scaffold of PMs facilitated escape from NLR recognition and potential acquisition of diverse virulence functions.


Assuntos
Ascomicetos , Ascomicetos/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Ribonuclease T1/genética , Ribonuclease T1/metabolismo , Polimorfismo Genético , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo
11.
Ecotoxicol Environ Saf ; 261: 115078, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37285677

RESUMO

Cadmium (Cd) stress causes serious disruptions in plant metabolism, physio-biochemical processes, crop yield, and quality characters. Nitric oxide (NO) improves the quality features and nutritional contents of fruit plants. However, how NO confers Cd toxicity in fragrant rice plants, is sparse. Hence, the present study investigated the effects of 50 µM NO donor sodium nitroprusside (SNP) on physio-biochemical processes, plant growth attributes, grain yield, and quality traits of fragrant rice under Cd stress (100 mg kg-1 soil). The results revealed that Cd stress diminished rice plant growth, impaired photosynthetic apparatus and antioxidant defense system, and deteriorated the grain quality traits. However, foliar application of SNP mitigated Cd stress by improving plant growth and gas exchange attributes. Higher electrolyte leakage (EL) was accompanied with elevated levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2) under Cd stress; however, exogenous application of SNP reduced them. The activities and relative expression levels of enzymatic antioxidants; superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) and non-enzymatic antioxidants, glutathione (GSH) contents were reduced by Cd stress, while SNP application regulated their activity and transcript abundances. SNP application improved fragrant rice grain yield and 2-acetyl-1-pyrroline content by 57.68 % and 75.54 % respectively, which is concomitant with higher biomass accumulation, photosynthetic efficiency, photosynthetic pigment contents, and an improved antioxidant defense system. Collectively, our results concluded that SNP application regulated the fragrant rice plant physio-biochemical processes, yield traits and grain quality characters under Cd-affected soil.


Assuntos
Antioxidantes , Oryza , Antioxidantes/metabolismo , Óxido Nítrico/metabolismo , Cádmio/metabolismo , Peróxido de Hidrogênio/metabolismo , Grão Comestível/metabolismo , Nitroprussiato/farmacologia , Glutationa/metabolismo , Fotossíntese , Solo/química
12.
Environ Pollut ; 333: 122040, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37328127

RESUMO

Despite the growing concerns about arsenic (As) toxicity, information on wheat adaptability in such an aggravating environment is limited. Thus, the present investigation based on an iono-metabolomic approach is aimed to decipher the response of wheat genotypes towards As toxicity. Wheat genotypes procured from natural conditions were characterized as high As-contaminated (Shri ram-303 and HD-2967) and low As-contaminated (Malviya-234 and DBW-17) based on ICP-MS As accumulation analysis. Reduced chlorophyll fluorescence attributes, grain yield and quality traits, and low grain nutrient status were accompanied by remarkable grain As accumulation in high As-contaminated genotypes, thus imposing a higher potential cancer risk and hazard quotient. Contrarily, in low As-contaminated genotypes, the richness of Zn, N, Fe, Mn, Na, K, Mg, and Ca could probably have supported less grain As accumulation, imparting better agronomic and grain quality traits. Additionally, from metabolomic analysis (LC-MS/MS and UHPLC), abundances of alanine, aspartate, glutamate, quercetin, isoliquiritigenin, trans-ferrulic, cinnamic, caffeic, and syringic bestow Malviya-234 as the best edible wheat genotype. Further, the multivariate statistical analysis (HCA, PCA, and PLS-DA) revealed certain other key metabolites (rutin, nobletin, myricetin, catechin, and naringenin) based genotypic discrimination that imparts strength to genotypes for better adaptation in harsh conditions. Out of the 5 metabolic pathways ascertained through topological analysis, the two main pathways vital for plant's metabolic adjustments in an As-induced environment were: 1. The alanine, aspartate and glutamate metabolism pathway, and 2. The flavonoid biosynthesis pathway. This is also evident from network analysis, which stipulates amino acid metabolism as a prominent As regulatory factor closely associated with flavonoids and phenolics. Therefore, the present findings are useful for wheat breeding programs to develop As adaptive genotypes that are beneficial for crop improvement and human health.


Assuntos
Arsênio , Animais , Masculino , Ovinos , Humanos , Arsênio/toxicidade , Arsênio/metabolismo , Triticum/metabolismo , Melhoramento Vegetal , Cromatografia Líquida , Ácido Aspártico , Espectrometria de Massas em Tandem , Genótipo , Grão Comestível/metabolismo
13.
New Phytol ; 239(5): 1919-1934, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37366232

RESUMO

Rice grain is a poor dietary source of zinc (Zn) but the primary source of cadmium (Cd) for humans; however, the molecular mechanisms for their accumulation in rice grain remain incompletely understood. This study functionally characterized a tonoplast-localized transporter, OsMTP1. OsMTP1 was preferentially expressed in the roots, aleurone layer, and embryo of seeds. OsMTP1 knockout decreased Zn concentration in the root cell sap, roots, aleurone layer and embryo, and subsequently increased Zn concentration in shoots and polished rice (endosperm) without yield penalty. OsMTP1 haplotype analysis revealed elite alleles associated with increased Zn level in polished rice, mostly because of the decreased OsMTP1 transcripts. OsMTP1 expression in yeast enhanced Zn tolerance but did not affect that of Cd. While OsMTP1 knockout resulted in decreased uptake, translocation and accumulation of Cd in plant and rice grain, which could be attributed to the indirect effects of altered Zn accumulation. Our results suggest that rice OsMTP1 primarily functions as a tonoplast-localized transporter for sequestrating Zn into vacuole. OsMTP1 knockout elevated Zn concentration but prevented Cd deposition in polished rice without yield penalty. Thus, OsMTP1 is a candidate gene for enhancing Zn level and reducing Cd level in rice grains.


Assuntos
Oryza , Zinco , Humanos , Zinco/metabolismo , Cádmio/metabolismo , Oryza/metabolismo , Vacúolos/metabolismo , Raízes de Plantas/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Grão Comestível/metabolismo
14.
Int J Mol Sci ; 24(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37373435

RESUMO

Aluminum (Al) toxicity is a primary limiting factor for crop production in acidic soils. The WRKY transcription factors play important roles in regulating plant growth and stress resistance. In this study, we identified and characterized two WRKY transcription factors, SbWRKY22 and SbWRKY65, in sweet sorghum (Sorghum bicolor L.). Al induced the transcription of SbWRKY22 and SbWRKY65 in the root apices of sweet sorghum. These two WRKY proteins were localized in the nucleus and exhibited transcriptional activity. SbWRKY22 showed the significant transcriptional regulation of SbMATE, SbGlu1, SbSTAR1, SbSTAR2a, and SbSTAR2b, which are major known Al tolerance genes in sorghum. Interestingly, SbWRKY65 had almost no effect on the aforementioned genes, but it significantly regulated the transcription of SbWRKY22. Therefore, it is speculated that SbWRKY65 might indirectly regulate Al-tolerance genes mediated by SbWRKY22. The heterologous expression of SbWRKY22 and SbWRKY65 greatly improved the Al tolerance of transgenic plants. The enhanced Al tolerance phenotype of transgenic plants is associated with reduced callose deposition in their roots. These findings suggest the existence of SbWRKY22- and SbWRKY65-mediated Al tolerance regulation pathways in sweet sorghum. This study extends our understanding of the complex regulatory mechanisms of WRKY transcription factors in response to Al toxicity.


Assuntos
Sorghum , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sorghum/metabolismo , Alumínio/metabolismo , Proteínas de Plantas/metabolismo , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico
15.
Plant Physiol Biochem ; 200: 107742, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37207492

RESUMO

Anthocyanins and selenium (Se) play critical roles in antioxidant, anticancer, antibacterial, and antiviral treatments. Previous studies indicate that colored-grain wheat accumulates more Se than regular wheat, and Se synergistically promotes anthocyanin synthesis. However, the mechanism through which Se regulates anthocyanin synthesis remains unclear. We studied anthocyanin accumulation during the grain-filling stage of colored-grain wheat development by employing transcriptomics and metabolomics. We show that Se biofortification increased the concentrations of Se, anthocyanin, chlorophyll a and b, and carotenoids in colored-grain wheat. Genes related to biosynthesis of anthocyanins, phenylpropanoids biosynthesis, and flavonoids biosynthesis were significantly upregulated after Se treatment, which led to the accumulation of anthocyanin metabolites in colored-grain wheat. Genetic alterations in the expression profiles of several genes and transcription factors were observed, which slowed down lignin and proanthocyanidin biosynthesis and accelerated anthocyanin synthesis. Our results deepen the understanding of anthocyanin metabolism in Se-treated colored-grain wheat, which will likely promote harvest of these varieties.


Assuntos
Selênio , Selênio/metabolismo , Antocianinas/metabolismo , Triticum/metabolismo , Clorofila A/metabolismo , Antioxidantes/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo
16.
PeerJ ; 11: e15229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090115

RESUMO

Background: Wheat is a staple cereal food around the globe. It provides a significant source of proteins, carbohydrates, and other micronutrients to humans. When grown on cadmium (Cd) contaminated soils, the uptake of trace elements e.g., iron (Fe) and zinc (Zn) has also been affected drastically that in turn affected the wheat grain. Methods: In this study, wheat accessions were used to investigate the impact of soil application of Zn (5 mg/kg, 20 mg/kg) and Cd (0 mg/kg, 10 mg/kg) on accumulation of these elements in wheat grains. A total of 45 Fe, Zn, and Cd transporter-related genes were used to design 101 gene-specific SSR (simple sequence repeat) markers. Results: In response to Cd stress, application of 20 mg/Kg Zn improved Fe (64.6 ug/g) and Zn (48.3 ug/g) accumulation in wheat grains as well as agronomic traits. Marker trait association revealed that SSR markers based on NAM-B1 gene (PR01 and PR02) were associated with Zn accumulation. Similarly, SSR markers based on TaVTL5-2B_5 (PR19 PR20), TaVTL5-2B_2 (PR25, PR26), TaVTL5-2D_3 (PR30), TaVTL2-2A (PR31), TaVTL1-6A (PR32), and TaVTL2-2D_1 (PR37) were significantly associated with Fe accumulation, while HMA3-5B1 (PR62) and TaNRAMP3-7D (PR89) were linked to Cd accumulation in grains. The highly associated markers may be used in marker-assisted selection of suitable wheat genotypes for breeding bio-fortified varieties with low Cd accumulation.


Assuntos
Cádmio , Zinco , Humanos , Zinco/metabolismo , Cádmio/metabolismo , Ferro/metabolismo , Triticum/genética , Melhoramento Vegetal , Grão Comestível/metabolismo , Repetições de Microssatélites/genética
17.
Molecules ; 28(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049836

RESUMO

Enrichment is the addition of nutrients to a food that does not contain them naturally, which is conducted in a mandatory manner and in order to solve a nutritional deficiency in the population. Enriched petipan are products that contain heme iron. The objective of this research was to evaluate the physical, chemical, mechanical and sensory characteristics of petipan produced with Andean grain flours and heme iron concentrate. A completely randomized design (CRD) with five experimental treatments was used with different levels of heme iron. The results show the direct influence of the heme concentration level on the chromatic, mechanical and textural characteristics of petipan. As the heme concentrate increases, its mechanical properties are considerably affected, with there being a correlation between the color intensity and a considerable reduction in its porosity. Samples without heme iron (T0) and 1% heme iron concentrate (T1) present the best mechanical and sensory characteristics; however, the incorporation of heme concentrate directly influences its nutritional, textural, and mainly chromatic components.


Assuntos
Farinha , Ferro , Ferro/química , Farinha/análise , Heme/química , Grão Comestível/metabolismo
18.
J Plant Physiol ; 284: 153981, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37054580

RESUMO

The importance of oats has increased because of their high nutritional value and health benefits in the human diet. High-temperature stress during the reproductive growth period has a detrimental effect on grain morphology by changing the structure and concentration of several seed-storage proteins. DA1, a conserved ubiquitin-proteasome pathway component, plays an important role in regulating grain size by controlling cell proliferation in maternal integuments during the grain-filling stage. However, there have been no reports or studies on oat DA1 genes. In this study, we identified three DA1-like genes (AsDA1-2D, AsDA1-5A, and AsDA1-1D) using genome-wide analysis. Among these, AsDA1-2D was found to be responsible for high-temperature stress tolerance via a yeast thermotolerance assay. The physical interaction of AsDA1-2D with oat-storage-globulin (AsGL-4D) and a protease inhibitor (AsPI-4D) was observed using yeast two-hybrid screening. A subcellular localization assay revealed that AsDA1-2D and its interacting proteins are localized in the cytosol and plasma membrane. An in vitro pull-down assay showed that AsDA1-2D forms a complex with both AsPI-4D and AsGL-4D. An in vitro cell-free degradation assay showed that AsGL-4D was degraded by AsDA1-2D under high-temperature conditions and that AsPI-4D inhibited the function of AsDA1-2D. These results suggest that AsDA1-2D acts as a cysteine protease and negatively regulates oat-grain-storage-globulin under heat stress.


Assuntos
Globulinas , Termotolerância , Humanos , Avena/metabolismo , Saccharomyces cerevisiae/metabolismo , Sementes/metabolismo , Grão Comestível/metabolismo , Resposta ao Choque Térmico , Globulinas/genética , Globulinas/metabolismo
19.
Physiol Plant ; 175(2): e13907, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37039612

RESUMO

Drought stress is one of the most serious environmental stress factor constraining crop production across the globe. Among cereals, wheat grains are very sensitive to drought as a small degree of stress can affect the enzymatic system. This study aimed to investigate whether nitrogen and pre-anthesis drought priming could enhance the action of major regulatory enzymes involved in starch accumulation and protein synthesis in bread wheat (Triticum aestivum L.). For this purpose, cultivars YM-158 (medium gluten) and YM-22 (low gluten) were grown in rain-controlled conditions under two nitrogen levels, that is, N180 (N1) and N300 (N2). Drought priming was applied at the jointing stage and drought stress was applied 7 days after anthesis. Drought stress reduced starch content but enhanced protein content in grains. N2 and primed plants kept higher contents of nonstructural carbohydrates, fructans, and sucrose; with higher activity of sucrose-phosphate synthase in flag leaves. Furthermore, N2 and priming treatments showed higher sink ability to develop grains by showing higher sucrose-to-starch conversion activities of adenosine diphosphate-glucose pyrophosphorylase, uridine diphosphate glucose pyrophosphorylase, sucrose-synthase, soluble-starch synthase, starch branching enzyme, and granule-bound starch synthase as compared to N1 and non-primed treatments. The application of N2 and primed treatment showed a greater ability to maintain grain filling in both cultivars as compared to N1 and non-primed crops. Our study suggested that high nitrogen has the potential to enhance the effect of pre-drought priming to change source-sink relationships and grain yield of wheat under drought stress during the filling process.


Assuntos
Nitrogênio , Amido , Triticum , Secas , Grão Comestível/metabolismo , Glutens/metabolismo , Glutens/farmacologia , Nitrogênio/metabolismo , Amido/metabolismo , Sacarose/metabolismo , Triticum/fisiologia
20.
Planta ; 257(5): 97, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37052727

RESUMO

MAIN CONCLUSION: ZmSUS1 increases the amylose content of maize by regulating the expression of Shrunken2 (Sh2) and Brittle2 (Bt2) which encode the size subunits of endosperm ADP-glucose pyrophosphorylase, and Granule bound starchsynthase1 (GBSS1) and Starch synthase1 (SS1). Cereal crops accumulate starch in seeds as an energy reserve. Sucrose Synthase (SuSy) plays an important role in grain starch synthesis. In this study, ZmSUS1 was transformed into maize inbred line KN5585, and transgenic plants were obtained. Compared with the non-transgenic negative control, the content and activity of SuSy were significantly increased, the amylose content in mature seeds of transgenic maize increased by 41.1-69.2%, the total starch content increased by 5.0-13.5%, the 100-grain weight increased by 19.0-26.2% and the average diameter of starch granules increased by 10.8-17.2%. These results indicated that overexpression of ZmSUS1 can significantly improve the traits of maize seeds and obtain new lines with high amylose content. It was also found that the overexpression of ZmSUS1 may increase the amylose content by altering the expression of endosperm ADP-glucose pyrophosphorylase (AGPase) subunits Shrunken2 (Sh2) and Brittle2 (Bt2). Moreover, the ectopic expression of ZmSUS1 also affected the expression of Granule bound starch synthase1 (GBSS1) and Starch synthase1 (SS1) which encode starch synthase. This study proved the important role of ZmSUS1 in maize starch synthesis and provided a new technology strategy for improving maize starch content and yield.


Assuntos
Endosperma , Amido , Endosperma/genética , Endosperma/metabolismo , Amido/metabolismo , Zea mays/genética , Zea mays/metabolismo , Amilose/metabolismo , Glucose-1-Fosfato Adenililtransferase/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grão Comestível/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA